

Proposed scheme for Honors in Artificial Intelligence and Machine Learning (Academic Year 2022-2023)

Sr.	Course Code	Course	(hrs	Teaching Scheme (hrs.) Continuous Assessment (A) (marks)		t (A)	Semester End Assessment (B) (marks)					(A+B)	Total Credits			
			Th	P	T	Credits	Th	T/W	Total CA (A)	Th / Cb	O	P	0 & P	Total SEA (B)		
SEM '	V															
1	DJ19ECHN1C1	Mathematics and Statistics for Artificial Intelligence & Machine Learning	4			4	25		25	75				75	100	4
SEM '	VI															
2	DJ19ECHN1C2	Concepts and Algorithms of Artificial Intelligence & Machine Learning	4			4	25		25	75				75	100	4
3	DJ19ECHN1L1	Concepts and Algorithm of Artificial Intelligence & Machine Learning Laboratory		2		1		25	25						25	1
SEM '	VII			•	•		•	•		•			•	•		•
4	DJ19ECHN1C3	Deep Learning	4			4	25		25	75				75	100	4
5	DJ19ECHN1L2	Deep Learning Laboratory		2		1		25	25						25	1
SEM '	VIII															
6	DJ19ECHN1C4	Pattern Recognition & Machine Learning	4			4	25		25	75				75	100	4
		Total	16	4	0	18	100	25	150	300	0	0	0	300	450	18

Proposed scheme for Honors in Intelligent Connectivity: 5G & IoT (Academic Year 2022-2023)

Sr. No.	Course Code	Course	Teac (hrs.)	hing S	Sche	me		inuou ssmen ks)			Semester End Assessment (B) (marks)		(A+B)	Total Credits		
			Th	P	Т	Credi s	Th	T/ W	Total CA (A)	Th / Cb	0	P	O & P	Total SEA (B)		
SEM V					1						u .		1		•	
1	DJ19ECHN2C1	Sensor and Actuator Technology for IoT	4			4	25		25	75				75	100	4
SEM VI	l			1	ı	ı	1	1			1	1	l		· I	
2	DJ19ECHN2C2	IoT System Design	4			4	25		25	75				75	100	4
3	DJ19ECHN2L1	Real Time System Design Laboratory		2		1		25	25		25			25	50	1
SEM VII			1	1		ı	1	ı				1				
4	DJ19ECHN2C3	Intelligent IoT Systems	4			4	25		25	75				75	100	4
5	DJ19ECHN2L2	Intelligent IoT Systems Laboratory		2		1		25	25		25			25	50	1
SEM VIII		1		_1		_		<u>I</u>	1	1		1				
6	DJ19ECHN2C4	Fifth Generation Technology	4			4	25		25	75				75	100	4
		Total	16	4	0	18	100	50	150	300	25	0	25	350	500	18

Proposed scheme for Minor in IoT and Industry 4.0 (Academic Year 2022-2023)

Sr.	Course Code	Course	Teac (hrs.	ching .)	Sche	eme		tinuous ssment ks)		Semester End Assessment (B) (marks)			(A+B)	Total Credits		
			Th	P	Т	Credits	Th	T/W	Total CA (A)	Th / Cb	O	P	O & P	Total SEA (B)		
SEM V	7				ı	·					I	ı				
1	DJ19MN8C1	Sensor Technology	4			4	25		25	75				75	100	4
SEM V	Ί				ı	·		I			I	I				
2	DJ19MN8C2	IoT System Design	4			4	25		25	75				75	100	4
SEM V	/II				ı	I			ı		ı	1	I			
3	DJ19MN8C3	IoT Network Design	4			4	25		25	75				75	100	4
4	DJ19MN8L1	IoT System and Network Design Laboratory		2		1		25	25		25			25	50	1
SEM V	'III															
5	DJ19MN8C4	Industry 4.0	4			4	25		25	75				75	100	4
6	DJ19MN8L2	Industry 4.0 Laboratory		2		1		25	25		25			25	50	1
		Total	16	4	0	18	100	50	150	300	25	0	50	350	500	18

Evaluation Scheme:

Continuous Assessment (A):

Course	Assessment Tools	Marks	Time (hrs.)
Theory	Mid Term test (50 % syllabus) / presentation / assignment	25	as
Theory	/ course project / group discussion / any other.	23	applicable
Laboratory	Performance in the laboratory and documentation.	25	аррпсаотс

The final certification and acceptance of term work will be subject to satisfactory performance upon fulfilling minimum passing criteria in the term work / completion of audit course.

Semester End Assessment (B):

Course	Assessment Tools	Marks	Time (hrs.)
Theory /	Written paper based on the entire syllabus.		
* Computer based	* Computer based assessment in the college premises.	75	3
Oral & Practical	Project based courses - Performance of the practical assigned during the examination and the output / results obtained. Based on the practical performed during the examination and on the entire syllabus.	as per the scheme	2

Prepared by Checked by Head of the Department Principal

Honors in Artificial Intelligence & Machine Learning

Semester: V

Program: Electronics and Telecommunication Engineering

Course: Mathematics and Statistics for Artificial Intelligence & Machine Learning (DJ19ECHN1C1)

Pre-requisite: --

1. Engineering Mathematics – IV

Objectives:

- 1. To build an intuitive understanding of Mathematics and relating it to Artificial Intelligence, Machine Learning.
- 2. To provide a strong foundation for probabilistic and statistical analysis mostly used in varied applications in Engineering.
- 3. To explore optimization and dimensionality reduction techniques.

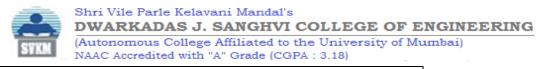
- 1. Apply linear algebra concepts to model, solve, and analyze real-world problems.
- 2. Apply probability distributions and sampling distributions to
- 3. Analyze various optimization techniques.
- 4. Describe Dimension Reduction Algorithms

Unit	Description	Duration
1	Linear Algebra	16
	1.1 Matrices and Gaussian Elimination	
	The geometry of linear equations, Elimination with matrices, Multiplication	
	and inverse matrices, Factorization into $A = LU$ form, Inverses and Transposes.	
	1.2 Vector Spaces	
	Vectors, Lengths and distances, angles, Inner Product, Vector Spaces and	
	Subspaces	
	Solving $Ax = 0$; pivot variables, solving $Ax = b$; Rank and nullity of a matrix, Row reduced form R.	
	Linear Independence, Basis, Dimension, Span, Norm.	
	The four fundamental subspaces, Change of basis.	
	1.3 Orthogonality	
	Orthogonal vectors and subspaces, Orthogonal and orthonormal Basis.	
	1.4 Projections onto Subspaces	
	Projection onto 1-D subspaces, Projection onto 2-D subspaces, Projection matrices and least squares, Orthogonal matrices and Gram-Schmidt procedure.	
	1.5 Eigen Values and Eigen Vectors	
	Concepts of Eigen values and Eigen vectors; Diagonalization of a matrix, Eigen decomposition.	

	1.6 Positive Definite Matrices				
	Symmetric matrices and positive definiteness, Positive definite matrices,				
	Similar matrices and Jordan Form, Singular Value Decomposition, Linear				
	Transformation of matrices.				
2	Probability and Statistics	14			
	2.1 Probability				
	Probability definition, Conditional Probability, The Chain Rule of Conditional				
	Probabilities, Independence and Conditional Independence.				
	2.2 Probability distribution				
	Binary variables, Bernoulli distribution, Binomial Distribution, Normal Distribution, Student's <i>t</i> distribution, chi-squared distribution, Sample and				
	sampling, sampling distribution and Central Limit Theorem.				
	2.3 Statistics				
	Mean, Variance and Covariance, Covariance matrix, Covariance and				
	Correlation. Mean of a dataset, Variance of one-dimensional datasets, Variance of higher-				
	dimensional datasets.				
	Linear Transformation of datasets: Effect on the mean, Effect on the				
	(co)variance.				
	2.4 Statistical Inference				
	Estimation, Hypothesis Testing, Confidence Interval				
	2.5 Bayesian Statistics				
	Bayesian concept learning: Likelihood, Prior, Posterior, Posterior Predictive distribution, MAP estimation.				
3	Information Theory	3			
J	Entropy, KL divergence, Mutual information.	J			
4	Continuous Optimization	5			
_	Optimization Using Gradient Descent, Stochastic Gradient Descent, Convex				
	Optimization.				
5	Mixture Models and EM algorithm	5			
	Mixture Models: Mixtures of Gaussians				
	The EM algorithm: Basic idea, EM for GMMs.				
6	Dimension Reduction Algorithms	5			
	6.1 Introduction				
	Linear Dimensionality Reduction, Principal component analysis, Factor				
	Analysis, Linear discriminant analysis.				
	6.2 Non-Linear Dimensionality Reduction				
	•				
	Multidimensional Scaling, Isometric Feature Mapping. Minimal polynomial				
7	Markov Process	4			
	Definition of Markov Process, Discrete Markov chains, The n-step transition				
	probabilities, Steady state probabilities, Chapman-Kolmogorov Theorem,				
	Classification of states of Markov Chain, HMM.				
	Total	52			

Text books:

- 1. Gilbert Strang, *Linear Algebra and its Applications*, 4th edn, Cengage India Private Limited, 2005.
- 2. Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, *Mathematics for Machine Learning*, Cambridge University Press, 2020.
- 3. Kevin P. Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.


Reference Books:

- 1. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*, MIT Press, 2018.
- 2. Ian J. Goodfellow, Yoshua Bengio and Aaron Courville, *Deep Learning*, MIT Press, 2016.

Useful Links:

- 1. https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/
- 2. https://archive.nptel.ac.in/courses/111/107/111107137/

Prepared by Checked by Head of the Department Principal

Honors in Artificial Intelligence & Machine Learning

Program: Electronics and Telecommunication Engineering | T. Y. B. Tech | Semester: VI

Course: Concepts and Algorithms of Artificial Intelligence & Machine Learning

(DJ19ECHN1C2)

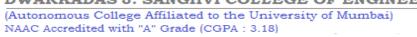
Course: Concepts and Algorithms of Artificial Intelligence & Machine Learning Laboratory

(DJ19ECHN1L1)

Pre-requisite: --

1. Mathematics and Statistics for Artificial Intelligence & Machine Learning (DJ19ECHN1C1)

Objectives:


- 1. To conceptualize the basic ideas and techniques underlying the design of intelligent systems.
- 2. To make students understand advanced representation formalism and search techniques.
- 3. To acquire in depth understanding of various supervised and unsupervised algorithms
- 4. To demonstrate dimensionality reduction techniques.

- 1. Understand basic building blocks of AI present in intelligent agents.
- 2. Apply an appropriate problem-solving method and knowledge representation technique.
- 3. Understand fundamental knowledge of developing machine learning models.
- 4. Design and evaluate an appropriate machine learning model.

Conce	epts and Algorithms of Artificial Intelligence & Machine Learning (DJ19ECHN10	C2)
Unit	Description	Duration
1	Intelligent Agents:	03
	Introduction, AI Intelligent Agents; Structure of Intelligent Agents; Agents and	
	Environments, Types of Agents.	
2	Introduction to AI Problems	02
	Introduction; Turing Test; Problems in AI.	
3	Solving Problems in AI: Searching Algorithms as Applied in AI.	10
	Uninformed search BFS, DFS, Depth First with Iterative Deepening, Generate and	
	Test Search Algorithms. Informed/Heuristic search Hill Climbing, Steepest Ascent	
	Hill Climbing, Problems in Hill Climbing, Greedy Nearest Neighbor, Best First	
	Search, Greedy Best First Search, Beam Search, A* search, AO* search algorithms.	
	Constraint satisfaction Search Crypto Arithmetic, Back Tracking: N Queens Problem.	
	Problem Reduction Search	
	AND/OR Graphs, Game Trees. Adversarial search in Games: The Min-Max	
	Algorithm on Exhaustively Searchable Graphs, Minimaxing to Fixed Ply Depth,	
	Alpha Beta Pruning.	
4	Knowledge Representation and Reasoning	08
	Logical Agents Knowledge Based Agents, Wumpus World Knowledge Base	
	Propositional Logic Syntax, Semantics, Inference, Resolution, Problems in	
	Propositional Logic. First Order Logic: Syntax and Semantic of FOL, Using FOL	

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

	Inference in FOL Propositional vs. First-Order Inference, Unification, Resolution.	
5	Preparing to model: Data Visualization and Preprocessing	05
	Basic Types of Data in Machine Learning: Plotting and exploring numerical,	
	categorical data, Exploring relationship between variables.	
	Reading Data from varied data sources into Pandas Dataframe, Data visualization in	
	Pie chart, Tree map, Heat map, Scatter plot, Histogram, Box plot.	
	Data Cleaning with Pandas: Filling in Missing values, Cleaning and Filling Missing	
	Data, Drop missing values, Smoothing Noisy data, Removing inconsistencies,	
	Functions in Python Pandas.	
6	Modelling and Evaluation	04
	Selecting a model: Predictive Models, Descriptive models.	
	Training a model: K-fold cross validation method	
	Model representation and Interpretability: Under fitting, Over fitting, Bias-variance	
	Trade off.	
	Evaluating Performance of a Model in Supervised and Unsupervised Learning.	
7	Supervised Learning:	08
	Linear Regression Algorithms: Simple Linear Regression, Multiple Linear regression,	
	Need for Feature Scaling, Different types of Feature Scaling, Gradient Descent in LR.	
	Logistic Regression : Building Logistic Regression model. Maximum Likelihood	
	Estimation.	
8	Supervised Learning: Classification	07
	K- Nearest Neighbor Classifier: Choosing Parameters for KNN classifier, KNN	
	Algorithm.	
	Decision Tree Steps to construct a Decision Tree, Classification using Decision Trees.	
	Issues using Decision Tree: Underfitting, Overfitting.Random Tree model.	
	Support Vector Machine Linear SVM: Separating Hyperplane. Optimal Hyperplane:	
	Relationship between Margin and optimal Hyperplane. Equation of	
	Hyperplane, Computation of Distance from a point to the Hyperplane,	
	Computation of the Hyperplane.	
9	Unsupervised Learning	05
	Clustering Different Types of clustering techniques. Partitioning methods.K- means	
	clustering, K-medoids.	
	Total	52

_	Concepts and Algorithms of Artificial Intelligence & Machine Learning Laboratory (DJ19ECHN1L1)							
Sr. No.	Suggested Experiments List:							
1	Data Visualization with Pandas/Seaborn.							
2	Data Cleaning and Pre-processing in Python.							
3	Exploratory Data Analysis in Python.							
4	Modelling and evaluation with Python.							
5	Implement BFS search algorithms to reach goal state							
6	Implement DFS search algorithms to reach goal state							

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

7	Implement DFID search algorithms to reach goal state
8	Implement Generate and Test search algorithms to reach goal state
9	Identify and analyze informed search Algorithm to solve the problem.
	Implement A* search algorithm to reach goal state.
10	Program to implement Local Search algorithm: Hill climbing search
11	Program on Genetic Algorithm to solve an optimization problem in AI.
12	To implement Linear Regression.
13	To implement Logistic Regression.
14	To implement Decision tree algorithm
15	To Implement Naïve Bayes Classifier algorithm.
17	To implement Support Vector Machine.
18	To implement K-Nearest Neighbor.
19	To implement K means Clustering.

Minimum eight experiments from the above suggested list or any other experiment based on syllabus will be included, which would help the learner to apply the concept learnt.

Books Recommended:

Text books:

- 1. Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Fourth Edition" Pearson Education, 2020.
- 2. Tom M. Mitchell, "Machine Learning", McGraw Hill, 2020.

Reference Books:

- 1. Saikat Dutt, Amit Das, "Machine Learning," Pearson, 2022.
- 2. Seema Acharya, "Reimagining Data Visualization Using Python," Wiley 2022.
- 3. Lavika Goel, "Artificial Intelligence: Concepts and Applications," Wiley 2021.

Honors in Artificial Intelligence & Machine Learning	Semester: VII
Program: Electronics and Telecommunication Engineering	
Course: Deep Learning (DJ19ECHN1C3)	
Course: Deep Learning Laboratory (DJ19ECHN1L2)	

Pre-requisite:

- 1. Mathematics and Statistics for Artificial Intelligence & Machine Learning
- ${\bf 2.} \quad {\bf Concepts \ and \ Algorithms \ of \ Artificial \ Intelligence \ \& \ Machine \ Learning}$

Objectives:

- 1. To understand Hyper Parameter Tuning
- 2. To explore Deep Learning Techniques with different learning strategies
- 3. To design Deep Learning Models for real time applications

- 1. Understand and Apply Hyper Parameters Tuning
- 2. Interpret working of deep learning models
- 3. Create Deep Learning Models for real-world problems
- 4. Investigate suitable deep learning algorithms for various applications.

Deep Learning (DJ19ECHN1C3)		
Unit	Description	Duration
1	Introduction to Deep Learning	12
	History of Deep Learning, Deep Learning Success Stories, McCulloch Pitts	
	Neuron, Multilayer Perceptron (MLPs), Representation Power of MLPs, Sigmoid	
	Neurons, Feed Forward MLPs, Error Function, Back propagation in MLPs,	
	Updating weights.	
	Optimization techniques: Gradient Descent (GD), Momentum Based GD,	
	Nesterov Accelerated GD, Stochastic GD, Ada Grad, RMS Prop, AdaDelta.	
	Vanishing and Exploding Gradient Problem: Fixing the vanishing Gradient	
	problem, Gradient Clipping, over fitting, L1 and L2 Regularization.	
2	Hyper Parameter Tuning Batch Normalization	08
	Tuning Process, using an Appropriate Scale to pick Hyper parameters, Hyper	
	parameters Tuning in Practice: Pandas vs. Caviar, Normalizing Activations in a	
	Network, Fitting Batch Norm into a Neural Network, why does Batch Norm work,	
	Batch Norm at Test Time.	

	Effective training in Deep Net: Early stopping, Dropout, Batch Normalization,	
	Instance Normalization, Group Normalization.	
3	Convolution Neural Networks	12
	Components of CNN architecture: Convolution layer, Pooling or Down	
	Sampling Layer, Flattening Layer, Fully Connected layer, Transfer Learning.	
	Non-Linearity: Rectified Linear Unit (ReLU), Leaky ReLU Layer.	
	Properties of CNN: Weight Sharing, Translation Invariance.	
	Architectures of CNN: LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet.	
4	Recurrent Neural Networks	08
	Simple Recurrent Neural Network	
	Training an RNN: Back Propagation through time (BPTT)	
	RNN Topology, Vanishing and Exploding Gradients.	
	Long Short-Term Memory (LSTM), Grated Recurrent Unit (GRU).	
5	Autoencoder	08
	Types of Auto encoders, Structure of Auto encoders, Regularization in auto	
	encoders, Denoising auto encoders, Sparse auto encoders.	
6	Applications: Face Recognition, Optical Character Recognition, Hand written	04
	digit recognition	
	Total	52

Text books:

- 1. Ian Goodfellow, Yoshua Benjio, Deep Learning-, Alanna Maldonado Publications, 1st ed. 2023.
- 2. Jon Krohn, Grant Beyleveld, Deep Learning Illustrated, Pearson Education, 1st ed., 2020.

Reference Books:

- 1. Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Recognition. Wiley, 2nd ed.,2021.
- 2. Francois Chollet, Deep Learning with Python, Manning Publications, 2nd ed., 2022.

Suggested List of Experiments:

Sr. No.	Title of the Experiment
1.	Implementation of different Activation functions and Cost functions in Neural Network.
2.	Implementation of different learning rules in MLP.
3.	Implementation of Feed Forward networks in a Multilayer Perceptron.
4.	Build a three-layer Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.
5.	Implementation of Curve Fitting with Deep Neural Networks.
6.	Binary Planar data classification with Deep Neural Networks.
7.	Hand written digit—Multiclass classification with Deep Neural Networks.
8.	Image Classification with Convolution Neural networks.
9.	Audio Classification with Convolution Neural networks.
10.	Prediction of a data sequence with simple Recurrent Neural Network.
11.	Language Modelling and Generating Text with RNN
12.	Handwriting Recognition with LSTM
13.	Image Compression with Autoencoders.
14.	Image Denoising with Autoencoders.

Minimum ten experiments from the above suggested list or any other experiment based on syllabus will be included, which would help the learner to apply the concept learnt.

Honors in Artificial Intelligence & Machine Learning		
Program: Electronics and Telecommunication Engineering	Final Year B.Tech	Semester: VIII
Course: Pattern Recognition and Machine Learning (DJ19	DECHN1C4)	

Pre-requisite: --

- 1. Mathematics and Statistics for Artificial Intelligence & Machine Learning. (DJ19ECHN1C1)
- 2. Concepts and Algorithms of Artificial Intelligence & Machine Learning. (DJ19ECHN1C2)
- 3. Deep Learning. (DJ19ECHN1C3)

Objectives:

- 1. To Extract patterns of a given dataset.
- 2. To Perform Feature Selection and Extraction.
- 3. To Design efficient models.

- 1. Understand fundamental concepts and theories for pattern recognition
- 2. Apply different algorithms for pattern recognition.
- 3. Perform Feature Extraction and Feature Selection.
- 4. Design efficient classifier or clustering model.

Unit	Description	Duration
1	Introduction	05
	What is Pattern Recognition? Data Sets for Pattern Recognition Different Paradigms for Pattern Recognition. Statistical Pattern Recognition	
2	Representation	10
	Data Structures for Pattern Representation. Patterns as Vectors, Patterns as	
	Strings, Logical Descriptions, Patterns as Trees and Graphs, Representation of	
	Clusters, Proximity Measures, Distance Measure, Weighted Distance	
	Measure, Non-Metric Similarity Function, Edit Distance 19 Mutual	
	Neighbourhood Distance (MND)	
	Size of Patterns Normalisation of Data, Use of Appropriate Similarity	
	Measures, Abstractions of the Data Set	
3	Feature Extraction	05
	Fisher's Linear Discriminant Principal Component Analysis (PCA)	
4	Feature Selection	05
	Exhaustive Search. Branch and Bound Search	

Shri Vile Parle Kelavani Mandal's **DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING**(Autonomous College Affiliated to the University of Mumbai)

(Autonomous College Affiliated to the University of NAAC Accredited with "A" Grade (CGPA: 3.18)

5	Nearest Neighbour Classifier	06
	Nearest Neighbour Classifier and its Variants, Efficient Algorithms for Nearest	
	Neighbour, Classification The Branch and Bound Algorithm, Prototype	
	Selection, Minimal Distance Classifier, Condensed Nearest Neighbour	
	Classifier.	
6	Bayes Classifier	06
	Bayes Classifier. Naive Bayes Classifier. Bayesian Belief Networks	
7	Clustering Large Datasets	05
	Incremental Clustering , Divide-and-Conquer Clustering	
8	Combination of Classifiers	05
	Introduction to Combining Classifiers. AdaBoost for Classification	
9	Application - Document Recognition	05
	Document Processing. Document Classification and Retrieval	
	Total	52

Books Recommended:

Text book:

1. Pattern Recognition, 2ed, Richard O. Duda, Peter E. Hard, David G. Stork, Wiley, 2021.

Reference Book:

1. Pattern Recognition And Machine Learning, Christopher M. Bishop, Springer ,2020.

Prepared by

Checked by

Head of the Department

Principal

Honors in Intelligent Connectivity: 5G & IoT

Program: Electronics & Telecommunication Engineering

Course: Sensor and Actuator Technology for IoT (DJ19CHHN2C1)

Pre-requisite: --

- 1. Basics of Electrical and Electronics Engineering
- 2. Electronic Devices and Circuits
- 3. Integrated Circuits

Objectives:

- 1. To provide understanding of physical parameters and sensing techniques of various sensors.
- 2. To provide Understanding about signal conditioning principle.
- 3. To familiarize about MEMS sensors and actuators

- 1. To understand the transduction principle of various sensors.
- 2. To select sensors suitable for required application.
- 3. To analyze wireless sensing technique.
- 4. To design data acquisition system.
- 5. Identify signal conditioning method for particular application.

Senso	Sensor and Actuator Technology for IoT (DJ19ECHN2C1)		
Unit	Description	Duration	
1	Classification and Performance Characteristics of Sensors and Actuators:	10	
	Classification of Sensors and Actuators: General Requirements for Interfacing, Units and		
	Measures, Transfer function, Impedance and Impedance matching, Range, Span, Resolution,		
	Accuracy, Errors, Repeatability, Sensitivity and Sensitivity analysis, Hysteresis, Nonlinearity		
	and saturation, Frequency Response, Response Time and Bandwidth, Calibration, Excitation		
	– Deadband, Reliability.		
2	Temperature and Optical Sensors and Actuators:	10	
	Thermo resistive Sensors: Thermistors, Resistance temperature sensors, Silicon resistive		
	sensors, Thermoelectric Sensors, PN Junction Temperature Sensors, Optical and		
	Acoustical Sensors, Thermo mechanical sensors and Actuators.		
	Optical Sensors and Actuators: Effects of Optical Radiation, Quantum Based Optical		
	Sensors, Photoelectric Sensors, Coupled Charge (CCD) Sensors and Detectors, Thermal		
	Based Optical Sensors, Active Far Infrared (AFIR) Sensors, Optical Actuators		
3	Electric, Magnetic, Mechanical Sensors and Actuators:	10	
	The Electric Field: Capacitive Sensors and Actuators		

	Magnetic Fields: Inductive sensors and Hall effect sensors, Magneto hydro dynamic (MHD)	
	Sensors and Actuators, Magnetometers Magnetic Actuators, Voltage and Current Sensors.	
	Mechanical Sensors and Actuators, Radiation Sensors, Mems and Smart Sensors Force	
	Sensors, Accelerometers, Pressure Sensors, Gyroscopes	
4	Signal Conditioning:	06
	Fundamentals of data Acquisition: Analog and Digital Data acquisition system with	
	different configurations, data loggers, noise and interference.	
	Signal Conditioning: Wheatstone bridge, Flash ADC, R2R DAC.	
	Utilization of Signal Conditioning circuits for Temperature, Pressure, Optical, Strain	
	Gauges, Displacement and Piezoelectric transducers.	
5	Current Trends in sensors and Technology Smart Sensors:	10
	Introduction, Primary sensors, Excitation, Amplification, Filters, Converters,	
	Compensation, Information Coding/Processing, Data Communication, Standards for	
	Smart Sensor Interface, The Automation Sensor Technologies: Introduction, Film	
	Sensors, Thick Film Sensors, Thin Film Sensors, Semiconductor IC Technology Standard	
	Methods, Microelectromechanical Systems (MEMS), Nano-sensors Sensor Applications:	
	On-board Automobile sensors, Home appliances sensors, Aerospace Sensors, Sensors for	
	Environmental Monitoring Self-learning Topics: Energy Harvesting, Self-powered	
	Wireless Sensing in ground, Ground penetrating sensors.	
	Total	46

Text books:

- 1. D. Patranabis, Sensor and Actuators, 2nd Edition, Prentice Hall of India.
- 2. A. K. Sawhney, *A course in Electronic Measurements and Instrumentation*, 19th Edition, Dhanpat Rai & Co.
- 3. H. S. Kalsi, *Electronic Instrumentation and Measurements*, ^{4th} Edition, McGraw-Hill.
- 4. Nathan Ida, Sensors, Actuators and their Interfaces, SciTech Publishing, 2013.

Reference Books:

- 1. Clarence. W. de Silva, *Sensors and Actuators: Engineering System Instrumentation*, ^{2nd} Edition, CRC Press, 2015.
- 2. Ernest. O. Doebelin, *Measurement Systems*, *Application and design*, Tata McGraw-Hill, Publishing Company Ltd., 5th Edition, 2004.
- 3. D. A. Bradley, D. Dawson, N. C. Burd, A. J. Loader, *Mechatronics*, Thomson Press India Ltd., 2004.
- 4. S. Renganathan, *Transducer Engineering*, Allied Publishers (P) Ltd., 2003.
- 5. W. Bolton, Mechatronics, ^{4th} Edition, Pearson Education, 2011.

Honors in Intelligent Connectivity: 5G & IoT

Program: Electronics & Telecommunication Engineering

Course: IoT System Design (DJ19ECHN2C2)

Course: Real Time System Design Laboratory (DJ19ECHN2L1)

Pre-requisite: --

1. Sensor and Actuator Technology for IoT

2. Computer Networks

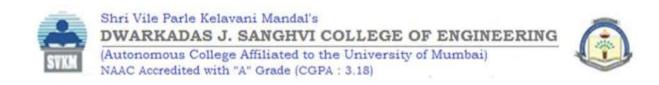
Objectives:

1. To provide understanding of enabling technologies.

- 2. To provide Understanding about IoT sensors and their interfacing.
- 3. To familiarize about protocols for IoT, Application building with IoT.

- 1. To understand the enabling technologies.
- 2. To select sensors suitable for required application.
- 3. To analyze protocols for IoT.
- 4. To Visualize the power of data from the IoT
- 5. To build the application with IoT

IoT System Design (DJ19ECHN2C2)		
Unit	Description	Duration
1	Introduction to Internet of Things	10
	Introduction and Definition of Internet of Things , IoT Growth- A statistical View,	
	Application areas of IoT, Characteristics of IoT, Things in IoT, IoT stack, IoT Enabling	
	Technologies, IoT Challenges, IoT Levels, Cyber Physical system versus IoT, Wireless	
	sensor Network versus IoT, Interfacing with any sensor, Microcontrollers : A Quick	
	walkthrough, Advanced RISC Machine : A Quick Overview.	
2	Protocols for IoT	10
	Messaging and Transport: Messaging Protocols: Message Queuing Telemetry Transport	
	(MQTT), Constrained Application Protocol (CoAP), Extensible Messaging and Presence	
	Protocol (XMPP), Data Distribution Service (DDS), Transport Protocols: Bluetooth Low	
	Energy, Light Fidelity(Li-Fi), Addressing and Identification: A Quick Overview-	
	IPv4,IPv6,IPv5, Uniform Resource Identifier (URI)	


3	Cloud for IoT	6
	IoT with Cloud- Challenges, Selection of cloud service provider, Introduction to Fog	
	Computing, Cloud computing: security aspects, Architectural Design of Compute and	
	Storage Clouds AWS and AZURE	
4	Data Analytics- Visualising the power of data from IoT.	10
	Data Analysis, Machine Learning, Types of Machine learning Models, Model building	
	process, Modelling algorithms, Model Performance, Big data Platform, Big Data Pipeline,	
	Real Life Projects, Recommendation in IoT Gadgets	
5	Application Building with IoT	9
	Introduction, Smart Perishable Tracking with IoT and sensors, Smart Healthcare, Smart	
	Inflight lavatory maintence with IoT, IoT – Based Application to monitor water quality, Smart	
	warehouse Monitoring, Smart Retail, Integrated Vehicle Health management	
	Total	45

Text books:

- 1. Shriram K Vasudevan, Abhishek S Nagarajan, RMD Sundaram, "Internet of Things", 2nd Edn, Wiley, 2020.
- 2. Dac-Nhuong Le, Chintan Bhatt, Mani Madhukar "Security Designs for the Cloud, IoT, and Social Networking" John Wiley & Sons, 2019.
- 3. Marco Schwatrz, "Internet of Things with Arduino Cookbook", Packt Publications, 2016.
- 4. Rajkumar Buyya, Christian Vecchiola. S. Thamarai Selvi, "Mastering Cloud Computing", McGraw Hill Education, 2013.

Reference books:

- 1. Agus Kurniawan "Learning AWS IoT" Packt Publishing, 2018.
- 2. Nick Antonopoulos and Lee Gillam, "Cloud Computing: Principles, Systems and Applications", 2nd Edn, Springer, 2017.

Suggested List of Experiments:

Real	Real Time System Design Laboratory (DJ19ECHN2L1)	
List o	List of Laboratory Experiments: (minimum eight)	
1	Tutorial based on current trends and advancements on IoT	
2	Study, discussion, and installation of ARM/Arduino/ESP 32/ RPi	
3	Interfacing the sensor with ARM/Arduino / ESP 32 / RPi	
4	Interfacing the motor drivers with ARM/ Arduino / ESP 32 / RPi	
5	Real time data analysis using sensors, processors, and gateway	
6	Interfacing the camera module with ARM/ Arduino / ESP 32 / RPi	
7	Real time data base management system using sensors, processors, and gateway	
8	Implementation of IoT system Using Messaging and Transport	
9	Implementation of data transfer using wireless devices	
10	Configuration and using the cloud platform	
11	Implementation of IoT system Using Voice Control technique	
12	Implementation of IoT system Using Personal Cloud Platform	
13	Implementation of IoT system Deep Learning Inference	
14	Implementation of IoT system using Artificial Intelligence	
15	Implementation of IoT system using Machine Learning	
16	Case study based on current trends and advancements on IoT	
	Any other experiment may be included, which would help the learner to understand the topic/concept.	

Honors in Intelligent Connectivity: 5G & IoT

Program: Electronics & Telecommunication Engineering

Course: Intelligent IoT Systems (DJ19ECHN2C3)

Pre-requisite: --

- 1. Sensor and Actuator Technology for IoT
- 2. IoT System Design

Objectives:

- 1. To provide understanding of physical parameters and sensing techniques of various sensors.
- 2. To provide Understanding about IIoT Systems.
- 3. To familiarize about Machine Learning and Data Science for Intelligent systems

- 1. To understand the basics of CPS.
- 2. To select sensors suitable for required application.
- 3. To design an industrial internet system.
- 4. To identify Business opportunities in IIoT Business Models.
- 5. To evaluate the information's using Machine Learning and Data Science.

Intelli	gent IoT Systems (DJ19ECHN2C3)	
Unit	Description	Duration
1	Overview of Industry 4.0 and Industrial Internet of Things: Introduction, Industry 4.0,	10
	Industrial revolution: Phases of development Evolution of Industry 4.0 Environmental	
	impacts of industrial revolution Industrial Internet Applications of Industry 4.0 IIoT	
	Prerequisites of IIoT Basics of CPS. CPS and IIoT Applications of IIoT.	
2	Industrial Internet of Things: Basics Introduction IIoT and Industry 4.0. IIC Industrial Internet	10
	Systems. Design of industrial internet systems Impact of industrial internet Benefits of	
	industrial internet Industrial Sensing Traditional Sensing Contemporary Sensing Industrial	
	Processes. Features of IIoT for industrial processes Industrial plant The future architecture	
	View point of industrial processes Digital Enterprise Applications of Industry 4.0.	
3	Business Models and Reference Architecture of IIoT	10
	Introduction, Business models, Definition of a business model, Reference architecture	
	Business Models of IoT, Business models of IIoT, Business opportunities in IIoT,	
	Categorization of business models in IIoT, Reference architecture of IoT, Reference	
	Architecture of IIoT, Categorization of reference architecture in IIoT, IIRA frame work:	
	Basics categorization of IIRA frame works, Key Performance Indicators for Occupational	
	Safety and Health	

4	Machine Learning and Data Science in Industries	10
	Introduction, Machine Learning, Categorization of ML Applications of ML in Industries Data	
	Science in Industries Deep Learning Application of Deep Learning in Industries Healthcare	
	Applications in Industries	
	Inventory Management and Quality Control: Introduction, Inventory Management	
	Inventory, Types of inventory management Inventory Management and IIoT, Benefits of IIoT	
	applications in inventory management, Quality Control	
5	Case Studies	6
	Introduction	
	Manufacturing Industry: Background of the industry, Challenges Industrial IoT as a solution,	
	Benefits, Automotive Industry: Background of the industry, Challenges, Industrial IoT as a	
	solution, Benefits, Mining Industry: Background of the industry, Challenges Industrial IoT as	
	a solution Benefits	
	Test Your Understanding: Self Learning Topics based on Problems.	
	Total	46

Text books:

- 1. Sudip Misra, Chandana Roy, Anandarup Mukherjee, Introduction to Industrial Internet of Tings and Industry 4.0. First edition published 2021, CRC Press.
- 2. Sudip Misra, Subhadeep Sarkar Subarna Chatterjee Sensors, Cloud, and Fog: The Enabling Technologies for the Internet of Things. 2019 by Taylor & Francis Group.

Reference Books:

1. Sravani Bhattacharjee, "Practical Industrial Internet of Things Security", Packt Publishing, 2018.

Honors in Intelligent Connectivity: 5G & IoT

Program: Electronics & Telecommunication Engineering

Course: Intelligent IoT Systems Laboratory (DJ19ECHN2L2)

Pre-requisite: --

- 1. Sensor and Actuator Technology for IoT
- 2. IoT System Design

Objectives:

- 1. To provide understanding of enabling technologies.
- 2. To provide Understanding about IIoT sensors and their interfacing.
- 3. To familiarize about protocols for IIoT, Application building with IIoT.

- 1. To understand the enabling technologies.
- 2. To select sensors suitable for required application.
- 3. To analyze protocols for IIoT.
- 4. To Visualize the power of data from the IIoT
- 5. To build the application with IIoT

Real	Time System Design Laboratory (DJ19ECHN2L1)		
List	List of Laboratory Experiments: (minimum eight)		
1	Tutorial based on current trends and advancements on Intelligent IoT Systems		
2	Study, discussion, and installation of ARM/Arduino/ESP 32/ RPi /STM32/Rpi PICO		
3	Interfacing the sensor with ARM/Arduino / ESP 32 / Rpi/ STM32/Rpi PICO		
4	Interfacing the motor drivers with ARM/ Arduino / ESP 32 / Rpi/ STM32/Rpi PICO		
5	Real time data analysis using sensors, processors, and gateway		
6	Interfacing the camera module with ARM/ Arduino / ESP 32 / RPi / STM32/Rpi PICO		
7	Real time data base management system using sensors, processors, and gateway		
8	Implementation of IIoT system Using Messaging and Transport		
9	Implementation of data transfer using wireless devices		
10	Configuration and using the cloud platform		
11	Implementation of IIoT system Using Voice Control technique		
12	Implementation of IIoT system Using Personal Cloud Platform		
13	Implementation of IIoT system Deep Learning Inference		
14	Implementation of IIoT system using Artificial Intelligence		
15	Implementation of IIoT system using Machine Learning		

16	Case study based on current trends and advancements on IIoT		
	Any other experiment may be included, which would help the learner to understand the		
	topic/concept.		

Text books:

- 1. Shriram K Vasudevan, Abhishek S Nagarajan, RMD Sundaram, "Internet of Things", 2nd Edn, Wiley, 2020.
- 2. Sudip Misra, Chandana Roy, Anandarup Mukherjee, Introduction to Industrial Internet of Tings and Industry 4.0. First edition published 2021, CRC Press.

Reference books:

- 1. Agus Kurniawan "Learning AWS IoT" Packt Publishing, 2018.
- 2. Nick Antonopoulos and Lee Gillam, "Cloud Computing: Principles, Systems and Applications", 2nd Edn, Springer, 2017.

Prepared by Checked by Head of the Department Principal

Program: Electronics & Telecommunication Engineering
Honors in Intelligent Connectivity: 5G & IoT

Final Y. B.Tech
Semester: VIII

Course: Fifth Generation Technology (DJ19ECHN2C4)

Pre-requisite:

- 1. Digital Communication
- 2. Mobile Communication System

Objectives:

- 1. Learn the basics of 5G and beyond wireless communication
- 2. Study 5G network architecture, Heterogeneous Network and Small cells
- 3. Provide an understanding of the key technologies and enablers of 5G and beyond communication systems.
- 4. Learn 5G technology like massive MIMO, mmWave, etc.

- 1. Distinguish between the major cellular communication standards (1G/2G/3G/4G/5G systems) and the architecture of wireless communications networks.
- 2. Apply the 5G techniques e.g., massive MIMO, mmWave, etc. for the design of communication systems.
- 3. Analyse various modulation and multiplexing techniques e.g., OFDM, NOMA, etc.
- 4. Describe applications of cognitive radio in 5G Wireless Communication

Fifth (Fifth Generation Technology (DJ19ECHN2C4)			
Unit	Description			
1	Introduction	08		
	Introduction to 5G Technology, Features, Requirements, Applications, 5G Services,			
	Introduction to 5G Digital modulations (OFDM, 5G Technology Modulation Techniques)			
	and performance metrics, Evolution of Air Interface Towards 5G, 5G Internet, Internet of			
	Things and Context-Awareness, Software Defined Networking, 5G NR Network Function			
	Virtualization (NFV) 5G NR			
2	5G Architecture	12		
	5G Network Architecture, Cloud RAN(C-RAN), Definitions of Heterogeneous Networks,			
	Radio Resource and Interference Management for Heterogeneous Networks, Traffic			
	offloading scenarios for heterogeneous networks, mobility management, and handover, Small			
	cell deployments: different types, Deployment scenarios, performance, and analysis, Energy-			
	efficient mechanism with BS sleep mode in green small cell networks, Game theory and			
	learning techniques for self-organization in small cell networks, 3GPP RAN standards for			
	small cell			

3	mmWave	10
	mmWave Millimeter bands, radio-wave propagation Physical layer design and algorithms,	
	mmWave MIMO challenges, channel modelling, channel estimation, and Beam-forming.	
	Types of transceivers, Merits, and Demerits, Applications - Beamforming Physical or Radio	
	layer Technologies - Massive MIMO (Sub 6Ghz) mmWave MIMO (above 6 GHz)	
4	NOMA	08
	Nonorthogonal Multiple Access (NOMA), Different Types: power domain NOMA and code	
	domain NOMA, Difference between Orthogonal multiple access and NOMA, Filter Bank	
	multi-carrier -Full duplex Radio Techniques, Precoding	
5	Trends in 5G	08
	5G NR, Carrier Aggregation in 5G, Open RAN, Use cases of 5G: eMBB, URLLC, and	
	mMTC, Advance applications: Robotic surgery, driverless car and Industrial IoT(IIoT),	
	Tactile Internet, 5G-IoT applications, AR/VR in 5G (The Next Generation Wireless Access	
	Technology)	
	Total	46

Text books:

- 1. Aditya K. Jagannatham, "Principles of Modern Wireless Communication Systems Theory and Practice", McGraw Hill Education, 2017.
- 2. Robert W. Heath, Robert C. Daniel, James N. Theodore S. Rappaport, Murdock, "Millimeter Wave Wireless Communication", Prentice Hall, 2014.

Reference Books:

- 1. R. Vannithamby and S. Talwar, Towards 5G: Applications, Requirements and Candidate Technologies., John Willey & Sons, West Sussex, 2017.
- 2. Manish, M., Devendra, G., Pattanayak, P., Ha, N., 5G and Beyond Wireless Systems PHY Layer Perspective, Series in Wireless Technology Springer, 2021.
- 3. M. Vaezi, Z. Ding, and H. V. Poor, Multiple Access techniques for 5G Wireless Networks and Beyond., Springer Nature, Switzerland, 2019.
- 4. Sassan Ahmadi, "5G NR: Architecture, Technology, Implementation, and Operation of 3GPP New Radio Standards", Academic Press, 2019.
- 5. Suvra Sekhar Das, Ramjee Prasad "Evolution of Air Interface Towards 5G: Radio Access Technology and Performance Analysis", River Publishers, 2018.

Prepared by Checked by Head of the Department Principal

Minor in IoT and Industry 4.0	Semester: V
Program: Common for All Programs (except EXTC Engineering)	
Course: Sensor Technology (DJ19MN8C1)	

Pre-requisite: --

1. Basics of Electrical and Electronics Engineering

Objectives:

- 1. To provide understanding of physical parameters and sensing techniques of various sensors.
- 2. To provide Understanding about signal conditioning principle.
- 3. To familiarize about MEMS sensors and actuators.

- 1. To understand the transduction principle of various sensors
- 2. To select sensors suitable for required application
- 3. To analyze wireless sensing technique
- 4. To design data acquisition system.
- 5. Identify signal conditioning method for particular application

IoT ar	IoT and Industry 4.0 (DJ19MN8C1)			
Unit	Description	Duration		
1	Classification and Performance Characteristics of Sensors and Actuators:			
	Classification of Sensors and Actuators: General Requirements for Interfacing, Units and			
	Measures, Transfer function, Impedance and Impedance matching, Range, Span, Resolution,			
	Accuracy, Errors, Repeatability, Sensitivity and Sensitivity analysis, Hysteresis, Nonlinearity			
	and saturation, Frequency Response, Response Time and Bandwidth, Calibration, Excitation,			
	Deadband, Reliability.			
2	Temperature and Optical Sensors and Actuators:	10		
	Thermo resistive Sensors: Thermistors, Resistance temperature sensors, Silicon resistive			
	sensors, Thermoelectric Sensors, PN Junction Temperature Sensors, Optical and Acoustical			
	Sensors, Thermo mechanical sensors and Actuators.			
	Optical Sensors and Actuators: Effects of Optical Radiation, Quantum Based Optical Sensors,			
	Photoelectric Sensors, Coupled Charge (CCD) Sensors and Detectors, Thermal Based Optical			
	Sensors, Optical Actuators.			
3	Electric, Magnetic, Mechanical Sensors and Actuators:	10		
	The Electric Field: Capacitive Sensors and Actuators			
	Magnetic Fields: Inductive sensors and Hall effect sensors, Sensors and Actuators,			
	Magnetometers Magnetic Actuators, Voltage and Current Sensors.			

	Mechanical Sensors And Actuators, Radiation Sensors, Accelerometers, Pressure Sensors,	
	Gyroscopes.	
4	Signal Conditioning:	06
	Fundamentals of data Acquisition: Analog and Digital Data acquisition system with different	
	configurations, data loggers, noise and interference.	
	Signal Conditioning: Wheatstone bridge, Flash ADC, R2R DAC.	
	Utilization of Signal Conditioning circuits for Temperature, Pressure, Optical, Strain Gauges,	
	Displacement and Piezoelectric transducers.	
5	Current Trends in sensors:	10
	Introduction, Primary sensors, Excitation, Amplification, Filters, Converters, Compensation,	
	Information Coding/Processing, Data Communication, Standards for Smart Sensor Interface,	
	The Automation Sensor Technologies: Introduction, Film Sensors, Thick Film Sensors, Thin	
	Film Sensors, Semiconductor IC Technology Standard Methods, Microelectromechanical	
	Systems (MEMS), Nano-sensors Sensor Applications: On-board Automobile sensors, Home	
	appliances sensors, Aerospace Sensors, Sensors for Environmental Monitoring Self-learning	
	Topics: Energy Harvesting, Self-powered Wireless Sensing in ground, Ground penetrating	
	sensors.	
	Total	46

Text books:

- 1. D. Patranabis, Sensor and Actuators, 2nd Edition, Prentice Hall of India.
- 2. A. K. Sawhney, *A course in Electronic Measurements and Instrumentation*, 19th Edition, Dhanpat Rai & Co.
- 3. H. S. Kalsi, *Electronic Instrumentation and Measurements*, ^{4th} Edition, McGraw-Hill.
- 4. Nathan Ida, Sensors, Actuators and their Interfaces, SciTech Publishing, 2013.

Reference Books:

- 1. Clarence. W. de Silva, *Sensors and Actuators: Engineering System Instrumentation*, ^{2nd} Edition, CRC Press, 2015.
- 2. Ernest. O. Doebelin, *Measurement Systems, Application and design*, Tata McGraw-Hill, Publishing Company Ltd., 5th Edition, 2004.
- 3. D. A. Bradley, D. Dawson, N. C. Burd, A. J. Loader, *Mechatronics*, Thomson Press India Ltd., 2004.
- 4. S. Renganathan, *Transducer Engineering*, Allied Publishers (P) Ltd., 2003.
- 5. W. Bolton, Mechatronics, ^{4th} Edition, Pearson Education, 2011.

Minors in IoT and Industry 4.0 Semester: VI Program: Common for All Programs (Except Electronics & Telecommunication Engineering) Course: IoT System Design

Pre-requisite: --

- 1. Sensor and Actuator Technology for IoT
- 2. Computer Networks

Objectives:

- 1. To provide understanding of enabling technologies.
- 2. To provide Understanding about IoT sensors and their interfacing.
- 3. To familiarize about protocols for IoT, Application building with IoT.

- 1. To understand the enabling technologies.
- 2. To select sensors suitable for required application.
- 3. To analyze protocols for IoT.
- 4. To Visualize the power of data from the IoT
- 5. To build the application with IoT

IoT System Design (DJ19MN8C2)		
Unit	Description	Duration
1	Introduction to Internet of Things	10
	Introduction and Definition of Internet of Things, IoT Growth- A statistical View,	
	Application areas of IoT, Characteristics of IoT, Things in IoT, IoT stack, IoT Enabling	
	Technologies, IoT Challenges, IoT Levels, Cyber Physical system versus IoT, Wireless	
	sensor Network versus IoT, Interfacing with any sensor	
2	Protocols for IoT	10
	Messaging and Transport: Messaging Protocols : Message Queuing Telemetry Transport	
	(MQTT), Constrained Application Protocol (CoAP), Extensible Messaging and Presence	
	Protocol (XMPP), Data Distribution Service (DDS), Transport Protocols: Bluetooth Low	
	Energy, Light Fidelity(Li-Fi),	
3	Cloud for IoT	6
	IoT with Cloud- Challenges, Selection of cloud service provider, Introduction to Fog	
	Computing, Cloud computing: security aspects, Architectural Design of Compute and	
	Storage Clouds AWS and AZURE	

4	Data Analytics- Visualising the power of data from IoT.	10
	Data Analysis, Machine Learning, Types of Machine learning Models, Model building	
	process, Modelling algorithms, Model Performance, Big data Platform, Big Data Pipeline,	
	Real Life Projects, Recommendation in IoT Gadgets	
5	Application Building with IoT	9
	Introduction, Smart Perishable Tracking with IoT and sensors, Smart Healthcare, Smart	
	Inflight lavatory maintence with IoT, IoT – Based Application to monitor water quality, Smart	
	warehouse Monitoring, Smart Retail, Integrated Vehicle Health management	
	Total	45

Text books:

- 1. Shriram K Vasudevan, Abhishek S Nagarajan, RMD Sundaram, "Internet of Things", 2nd Edn, Wiley, 2020.
- 2. Dac-Nhuong Le, Chintan Bhatt, Mani Madhukar "Security Designs for the Cloud, IoT, and Social Networking" John Wiley & Sons, 2019.
- 3. Marco Schwatrz, "Internet of Things with Arduino Cookbook", Packt Publications, 2016.
- 4. Rajkumar Buyya, Christian Vecchiola. S. ThamaraiSelvi, "Mastering Cloud Computing", McGraw Hill Education, 2013.

Reference books:

- 1. Agus Kurniawan "Learning AWS IoT" Packt Publishing, 2018.
- 2. Nick Antonopoulos and Lee Gillam, "Cloud Computing: Principles, Systems and Applications", 2nd Edn, Springer, 2017.

Prepared by Checked by Head of the Department Principal

Program: Common for all Programs	Group A	F.Y B.Tech	Semester: VII
Course: IoT Network Design			

Pre-requisite: --

- 1. Sensor and Actuator Technology for IoT
- 2. IoT System Design

Objectives:

- 1. To provide understanding of physical parameters and sensing techniques of various sensors.
- 2. To provide Understanding about IIoT Systems.
- 3. To familiarize about Machine Learning and Data Science for Intelligent systems

- 1. To understand the basics of CPS.
- 2. To select sensors suitable for required application.
- 3. To design an industrial internet system.
- 4. To identify Business opportunities in IIoT Business Models.
- 5. To evaluate the information's using Machine Learning and Data Science.

Unit	Description	Duration
1	Overview of Industry 4.0 and Industrial Internet of Things	10
	Introduction, Industry 4.0, Industrial revolution: Phases of development Evolution of	
	Industry 4.0 Environmental impacts of industrial revolution Industrial Internet Applications	
	of Industry 4.0 IIoT Prerequisites of IIoT Basics of CPS. CPS and IIoT Applications of IIoT.	
2	Industrial Internet of Things: Basics Introduction IIoT and Industry 4.0. IIC Industrial	10
	Internet Systems. Design of industrial internet systems Impact of industrial internet Benefits	
	of industrial internet Industrial Sensing Traditional Sensing Contemporary Sensing Industrial	
	Processes. Features of IIoT for industrial processes Industrial plant The future architecture	
	View point of industrial processes Digital Enterprise Applications of Industry 4.0.	
3	Business Models and Reference Architecture of HoT	10
	Introduction, Business models, Definition of a business model, Reference architecture	
	Business Models of IoT, Business models of IIoT, Business opportunities in IIoT,	
	Categorization of business models in IIoT, Reference architecture of IoT, Reference	
	Architecture of IIoT, Categorization of reference architecture in IIoT	

4	Machine Learning and Data Science in Industries	10
	Introduction, Machine Learning, Categorization of ML Applications of ML in Industries Data	
	Science in Industries Deep Learning Application of Deep Learning in Industries Healthcare Applications in Industries	
	Inventory Management and Quality Control: Introduction, Inventory Management Inventory, Types of inventory management Inventory Management and IIoT, Benefits of IIoT	
	applications in inventory management, Quality Control	
5	HoT Analytics	6
	Introduction to IIoT Analytics, Introduction., Necessity of analytics. IIoT Analytics Categorization of analytics: IIoTandIndustry4.0 Usefulness of IIoT analytics Challenges of analytics in industries Mapping of analytics with the IIRA architecture Deployment of analytics. Artificial intelligence. Applications of analytics across value chain	
	Total	46

Text books:

- 1. Sudip Misra, Chandana Roy, Anandarup Mukherjee, Introduction to Industrial Internet of Tings and Industry 4.0. First edition published 2021, CRC Press.
- 2. Sudip Misra, Subhadeep Sarkar Subarna Chatterjee Sensors, Cloud, and Fog: The Enabling Technologies for the Internet of Things. 2019 by Taylor & Francis Group.

Reference Books:

1. Sravani Bhattacharjee, "Practical Industrial Internet of Things Security", Packt Publishing, 2018.

Program: Common for all Programs	Group A	F.Y B.Tech	Semester: VII
Course: IoT System and Network Design Laboratory			

Pre-requisite: --

- 1. Sensor and Actuator Technology for IoT
- 2. Computer Networks

Objectives:

- 1. To provide understanding of enabling technologies.
- 2. To provide Understanding about IoT sensors and their interfacing.
- 3. To familiarize about protocols for IoT, Application building with IoT.

- 1. To understand the enabling technologies.
- 2. To select sensors suitable for required application.
- 3. To analyze protocols for IoT.
- 4. To Visualize the power of data from the IoT
- 5. To build the application with IoT

IoT	IoT System and Network Design Laboratory (DJ19MN8L1)		
List of Laboratory Experiments: (minimum eight)			
1	Tutorial based on current trends and advancements on IoT		
2	Study, discussion, and installation of ARM/Arduino/ESP 32/ RPi		
3	Interfacing the sensor with ARM/Arduino / ESP 32 / RPi		
4	Interfacing the motor drivers with ARM/ Arduino / ESP 32 / RPi		
5	Real time data analysis using sensors, processors, and gateway		
6	Interfacing the camera module with ARM/ Arduino / ESP 32 / RPi		
7	Real time data base management system using sensors, processors, and gateway		
8	Implementation of IoT system Using Messaging and Transport		
9	Implementation of data transfer using wireless devices		
10	Configuration and using the cloud platform		
	Any other experiment may be included, which would help the learner to understand the topic/concept.		

Text books:

- 1. Shriram K Vasudevan, Abhishek S Nagarajan, RMD Sundaram, "Internet of Things", 2nd Edn, Wiley, 2020.
- 2. Dac-Nhuong Le, Chintan Bhatt, Mani Madhukar "Security Designs for the Cloud, IoT, and Social Networking" John Wiley & Sons, 2019.
- 3. Marco Schwatrz, "Internet of Things with Arduino Cookbook", Packt Publications, 2016.
- 4. Rajkumar Buyya, Christian Vecchiola. S. Thamarai Selvi, "Mastering Cloud Computing", McGraw Hill Education, 2013.

Reference books:

- 1. Agus Kurniawan "Learning AWS IoT" Packt Publishing, 2018.
- 2. Nick Antonopoulos and Lee Gillam, "Cloud Computing: Principles, Systems and Applications", 2nd Edn, Springer, 2017.

Prepared by Checked by Head of the Department Principal

Semester: VIII

Minor in IoT and Industry 4.0

Program: Common for All Programs (except EXTC Engineering)

Course: Industry 4.0 (DJ19MN8C4)

Pre-requisite: --

1. Sensor Technology

2. IoT System Design

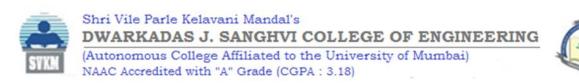

3. IoT Network Design

Objectives:

- 1. To familiarize the impact of industrial revolution, requirements, drivers of Industry 4.0.
- 2. To provide the key aspects of cloud computing and fog computing in the industries.
- 3. To grasp of the terminologies, technologies, and requirements for industrial data transmission.

- 1. To understand the industrial revolution, requirements
- 2. To select sensors suitable for cloud computing and fog computing
- 3. To analyze of the terminologies, technologies, and requirements for industrial data transmission
- 4. To design use cases for industries.

Unit	Description	Duration
1	Industry 4.0: Basics: Introduction, Historical context, Significant changes in the industry	10
	,Design requirements of Industry 4.0 ,Drivers of Industry 4.0 ,Megatrends ,Tipping points,	
	Sustainability Assessment of industries, Globalization effects, Socio-economic effects, Smart	
	Business Perspective, Characteristics of smart business model, Cybersecurity, Various	
	cybersecurity threats, Requirements of cybersecurity, Impacts of Industry 4.0, Economy	
	perspective, Business perspective, Global perspective	
2	Key Technologies: Off-site Technologies	08
	Introduction, Cloud Computing, Necessity of cloud computing, Cloud computing and IIoT,	
	Industrial cloud platform providers, SLA for IIoT, Requirements of Industry 4.0 and its	
	solution, Fog Computing, Fog computing for IIoT, Applications of fog and their solutions	
3	Key Technologies: On-site Technologies Introduction, need for Industry 4.0,	10
	Transformations required, Augmented Reality, History of AR, Categorization of AR,	
	Applications of AR, Virtual Reality, History of VR, Categorization of VR, Applications of	
	VR, Big Data and Advanced Analytics , Characteristics of big data, Big data sources, Big	
	data acquisition and storage, Necessity of data analytics, Types of analytics, Smart factories,	
	Characteristics of smart factory, Technologies used in smart factories, Lean manufacturing	
		l


Text books:

- 1. Sudip Misra, Chandana Roy, Anandarup Mukherjee, Introduction to Industrial Internet of Tings and Industry 4.0. First edition published 2021, CRC Press.
- 2. Sudip Misra, Subhadeep Sarkar Subarna Chatterjee Sensors, Cloud, and Fog: The Enabling Technologies for the Internet of Things. 2019 by Taylor & Francis Group.

Reference Books:

- 1. Alasdair Gilchrist, Industry 4.0, The Industrial Internet of Things., apress, 2016.
- 2. Jörg Bischof, KiCad 7: Short introduction for the practitioner, Amazon Digit Services LLC Kdp, 2023.

Industry 4.0 Laboratory (DJ19MN8L2)	
Suggested List of Experiments:	
1	Tutorial based on current trends and advancements on Industry 4.0
2	Study, discussion, and installation of ARM/Arduino/ESP 32/ RPi /STM32/Rpi PICO
3	Interfacing the sensor with ARM/Arduino / ESP 32 / Rpi/ STM32/Rpi PICO
4	Interfacing the motor drivers with ARM/ Arduino / ESP 32 / Rpi/ STM32/Rpi PICO

5	Real time data analysis using sensors, processors, and gateway
6	Interfacing the camera module with ARM/ Arduino / ESP 32 / RPi / STM32/Rpi PICO
7	Real time data base management system using sensors, processors, and gateway
8	Implementation of IIoT system Deep Learning Inference
9	Implementation of IIoT system using Artificial Intelligence
10	Implementation of IIoT system using Machine Learning
11	Case study based on current trends and advancements on IIoT
12	Study, discussion, and installation of 3D Printing Software
13	Experiment based on 3D Printing
14	Study, discussion, and installation of PCB Design Software
15	Design and Making of an PCB
	Any other experiment may be included, which would help the learner to understand the
	topic/concept.

Text books:

- 1. Jean-Pierre Charras, Fabrizio Tappero, Wayne Stambaugh, "KiCad Complete Reference Manual 12th Media Services, 2018.
- 2. Richard Sheng, "3D Printing, A Revolutionary Process for Industry Applications" Elsevier Science, 2022.

Prepared by Checked by Head of the Department Principal